12
Semiconducting Nanostructured Materials
for Bioelectronics
Jayshree Khedkar
Department of Chemistry, Shri Anand College, Pathardi, Ahmednagar, India
Anil M. Palve
Department of Chemistry, Mahatma Phule ASC College, Panvel, Navi-Mumbai, India
Ram K. Gupta
Department of Chemistry, National Institute for Materials Advancement, Pittsburg State University,
Pittsburg, USA
CONTENTS
12.1 Introduction......................................................................................................................187
12.2 Semiconducting Materials and Their Advantages for Bioelectronics....................189
12.2.1 Wide Bandgap-Based Materials for Bioelectronics .....................................189
12.2.2 Conducting Polymer-Based Materials for Bioelectronics...........................190
12.2.3 Carbon-Based Materials for Bioelectronics...................................................190
12.3 Methods Used for Fabrication of Bioelectronics........................................................190
12.3.1 Top-Down Approach........................................................................................192
12.3.2 Bottom-Up Approach .......................................................................................192
12.4 Applications of Bioelectronics.......................................................................................193
12.4.1 Biosensors ...........................................................................................................193
12.4.2 Wearable and Implantable Devices................................................................195
12.4.3 Printable/Flexible Bioelectronics....................................................................197
12.5 Conclusions and Future Perspectives..........................................................................197
References ....................................................................................................................................198
12.1 Introduction
Over the last several years, electronic technologies have revolutionized biology and
medicine. A variety of bio-devices have been developed to date, all of which have aided
in this revolution. A multidisciplinary approach integrating material science, microelec
tronics, and bioengineering enabled these bioelectronics breakthroughs [1]. Due to the
significant developments in materials science, notably nanomaterial-based technology,
the field of bioelectronics has gained new dimensions. In biomedical studies, devices that
are durable and demonstrate long-term performance in soft tissues or physiologic en
vironments are pivotal [2]. The various biomedical applications such as monitoring,
DOI: 10.1201/9781003263265-12
187